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Experimental studies have observed synaptic potentiation when a presy-
naptic neuron fires shortly before a postsynaptic neuron and synaptic
depression when the presynaptic neuron fires shortly after. The depen-
dence of synaptic modulation on the precise timing of the two action
potentials is known as spike-timing dependent plasticity (STDP). We
derive STDP from a simple computational principle: synapses adapt so
as to minimize the postsynaptic neuron’s response variability to a given
presynaptic input, causing the neuron’s output to become more reliable
in the face of noise.

Using an objective function that minimizes response variability and
the biophysically realistic spike-response model of Gerstner (2001), we
simulate neurophysiological experiments and obtain the characteristic
STDP curve along with other phenomena, including the reduction in
synaptic plasticity as synaptic efficacy increases. We compare our account
to other efforts to derive STDP from computational principles and argue
that our account provides the most comprehensive coverage of the phe-
nomena. Thus, reliability of neural response in the face of noise may be
a key goal of unsupervised cortical adaptation.

1 Introduction

Experimental studies have observed synaptic potentiation when a presy-
naptic neuron fires shortly before a postsynaptic neuron and synaptic de-
pression when the presynaptic neuron fires shortly after (Markram, Liibke,
Frotscher, & Sakmann, 1997; Bell, Han, Sugawara, & Grant, 1997; Zhang,
Tao, Holt, Harris, & Poo, 1998; Bi & Poo, 1998; Debanne, Gahwiler, & Thomp-
son, 1998; Feldman, 2000; Sjostrom, Turrigiano, & Nelson, 2001; Nishiyama,
Hong, Mikoshiba, Poo, & Kato, 2000). The dependence of synaptic
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Figure 1: (A) Measuring STDP experimentally. Presynaptic and postsynaptic
spike pairs are repeatedly induced at a fixed interval At,._pos:, and the resulting
change to the strength of the synapse is assessed. (B) Change in synaptic strength
after repeated spike pairing as a function of the difference in time between
the presynaptic and postsynaptic spikes. A presynaptic before postsynaptic
spike induces LTP and postsynaptic before presynaptic LTD (data points were
obtained by digitizing figures in Zhang et al., 1998). We have superimposed an
exponential fit of LTP and LTD.

modulation on the precise timing of the two action potentials, known as
spike-timing dependent plasticity (STDP), is depicted in Figure 1. Typi-
cally, plasticity is observed only when the presynaptic and postsynaptic
spikes occur within a 20 to 30 ms time window, and the transition from
potentiation to depression is very rapid. The effects are long lasting and
are therefore referred to as long-term potentiation (LTP) and depression
(LTD). An important observation is that the relative magnitude of the
LTP component of STDP decreases with increased synaptic efficacy be-
tween presynaptic and postsynaptic neuron, whereas the magnitude of
LTD remains roughly constant (Bi & Poo, 1998). This finding has led to
the suggestion that the LTP component of STDP might best be modeled
as additive, whereas the LTD component is better modeled as being mul-
tiplicative (Kepecs, van Rossum, Song, & Tegner, 2002). For detailed re-
views of STDP see Bi and Poo (2001), Roberts and Bell (2002), and Dan and
Poo (2004).

Because these intriguing findings appear to describe a fundamental
learning mechanism in the brain, a flurry of models has been developed
that focus on different aspects of STDP. A number of studies focus on bio-
chemical models that explain the underlying mechanisms giving rise to
STDP (Senn, Markram, & Tsodyks, 2000; Bi, 2002; Karmarkar, Najarian, &
Buonomano, 2002; Saudargiene, Porr, & Worgotter, 2004; Porr & Worgotter,
2003). Many researchers have also focused on models that explore the con-
sequences of STDP-like learning rules in an ensemble of spiking neurons
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(Gerstner, Kempter, van Hemmen, & Wagner, 1996; Kempter, Gerstner, &
van Hemmen, 1999, 2001; Song, Miller, & Abbott, 2000; van Rossum, Bi, &
Turrigiano, 2000; Izhikevich & Desai, 2003; Abbott & Gerstner, 2004; Burkitt,
Meffin, & Grayden, 2004; Shon, Rao, & Sejnowski, 2004; Legenstein, Naeger,
& Maass, 2005), and a comprehensive review of the different types and con-
clusions can be found in Porr and Worgotter, (2003). Finally, a recent trend is
to propose models that provide fundamental computational justifications
for STDP. This article proposes a novel justification, and we explore the
consequences of this justification in detail.

Most commonly, STDP is viewed as a type of asymmetric Hebbian learn-
ing with a temporal dimension. However, this perspective is hardly a
fundamental computational rationale, and one would hope that such an
intuitively sensible learning rule would emerge from a first-principle com-
putational justification.

Several researchers have tried to derive a learning rule yielding STDP
from first principles. Dayan and Hausser (2004) show that STDP can be
viewed as an optimal noise-removal filter for certain noise distributions.
However, even a small variation from these noise distributions yields quite
different learning rules, and the noise statistics of biological neurons are
unknown. Similarly, Porr and Worgotter, (2003) propose an unsupervised
learning rule based on the correlation of bandpass-filtered inputs with the
derivative of the output and show that the weight change rule is qualita-
tively similar to STDP.

Hopfield and Brody (2004) derive learning rules that implement ongoing
network self-repair. In some circumstances, a qualitative similarity to STDP
is found, but the shape of the learning rule depends on both network
architecture and task. M. Eisele (private communication, April 2004). has
shown that an STDP-like learning rule can be derived from the goal of
maintaining the relevant connections in a network.

Rao and Sejnowski (1999, 2001) suggest that STDP may be related to pre-
diction, in particular to temporal difference (TD) learning. They argue that
STDP emerges when a neuron attempts to predict its membrane potential
at some time ¢t from the potential at time t — At. As Dayan (2002) points
out, however, temporal difference learning depends on an estimate of the
prediction error, which will be very hard to obtain. Rather, a quantity that
might be called an activity difference can be computed, and the learning
rule is then better characterized as a “correlational learning rule between
the stimuli, and the differences in successive outputs” (Dayan, 2002; see also
Porr & Worgotter, 2003, appendix B). Furthermore, Dayan argues that for
true prediction, the model has to show that the learning rule works for bio-
logically realistic timescales. The qualitative nature of the modeling makes
it unclear whether a quantitative fit can be obtained. Finally, the derived
difference rule is inherently instable, as it does not impose any bounds
on synaptic efficacies; also, STDP emerges only for a narrow range of At
values.
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Chechik (2003) relates STDP to information theory via maximization
of mutual information between input and output spike trains. This ap-
proach derives the LTP portion of STDP but fails to yield the LTD por-
tion. Nonetheless, an information-theoretic approach is quite elegant and
has proven valuable in explaining other neural learning phenomena (e.g.,
Linsker, 1989).

The account we describe in this article also exploits an information-
theoretic approach. We are not the only ones to appreciate the elegance of
information-theoretic accounts. In parallel with a preliminary presentation
of our work at the NIPS 2004 conference, two quite similar information-
theoretic accounts also appeared (Bell & Parra, 2005; Toyoizumi, Pfister,
Aihara, & Gerstner, 2005). It will be easiest to explain the relationship of
these accounts to our own once we have presented ours.

The computational approaches of Chechik (2003), Dayan and Hausser
(2004) and Porr and Worgotter (2003) are all premised on a rate-based
neuron model that disregards the relative timing of spikes. It seems quite
odd to argue for STDP using neural firing rate: if spike timing is irrelevant to
information transmission, then STDP is likely an artifact and is not central
to understanding mechanisms of neural computation. Further, as Dayan
and Hausser (2004) note, because STDP is not quite additive in the case of
multiple input or output spikes that are near in time (Froemke & Dan, 2002),
one should consider interpretations that are based on individual spikes, not
aggregates over spike trains.

In this letter, we present an alternative theoretical motivation for
STDP from a spike-based neuron model that takes the specific times of
spikes into account. We conjecture that a fundamental objective of corti-
cal computation is to achieve reliable neural responses, that is, neurons
should produce the identical response—in both the number and timing
of spikes—given a fixed input spike train. Reliability is an issue if neu-
rons are affected by noise influences, because noise leads to variability
in a neuron’s dynamics and therefore in its response. Minimizing this
variability will reduce the effect of noise and will therefore increase the
informativeness of the neuron’s output signal. The source of the noise
is not important; it could be intrinsic to a neuron (e.g., a time-varying
threshold), or it could originate in unmodeled external sources that cause
fluctuations in the membrane potential uncorrelated with a particular
input.

We are not suggesting that increasing neural reliability is the only ob-
jective of learning. If it were, a neuron would do well to shut off and give
no response regardless of the input. Rather, reliability is but one of many
objectives that learning tries to achieve. This form of unsupervised learn-
ing must, of course, be complemented by other unsupervised, supervised,
and reinforcement learning objectives that allow an organism to achieve its
goals and satisfy drives. We return to this issue below and in our conclusions
section.
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We derive STDP from the following computational principle: synapses
adapt so as to minimize the variability in the timing of the spikes of the
postsynaptic neuron’s output in response to given presynaptic input spike
trains. This variability reduction causes the response of a neuron to become
more deterministic and less sensitive to noise, which provides an obvious
computational benefit.

In our simulations, we follow the methodology of neurophysiological ex-
periments. This approach leads to a detailed fit to key experimental results.
We model not only the shape (sign and time course) of the STDP curve, but
also the fact that potentiation of a synapse depends on the efficacy of the
synapse; it decreases with increased efficacy. In addition to fitting these key
STDP phenomena, the model allows us to make predictions regarding the
relationship between properties of the neuron and the shape of the STDP
curve. The detailed quantitative fit to data makes our work unique among
first-principle computational accounts.

Before delving into the details of our approach, we give a basic intuition
about the approach. Noise in spiking neuron dynamics leads to variability
in the number and timing of spikes. Given a particular input, one spike
train might be more likely than others, but the output is nondeterminis-
tic. By the response variability minimization principle, adaptation should
reduce the likelihood of these other possibilities. To be concrete, consider
a particular experimental paradigm. In Zhang et al. (1998), a presynaptic
neuron is identified with a weak synapse to a postsynaptic neuron, such
that this presynaptic input is unlikely to cause the postsynaptic neuron to
fire. However, the postsynaptic neuron can be induced to fire via a second
presynaptic connection. In a typical trial, the presynaptic neuron is induced
to fire a single spike, and with a variable delay, the postsynaptic neuron
is also induced to fire (typically) a single spike. To increase the likelihood
of the observed postsynaptic response, other response possibilities must be
suppressed.

With presynaptic input preceding the postsynaptic spike, the most likely
alternative response is no output spikes at all. Increasing the synaptic con-
nection weight should then reduce the possibility of this alternative re-
sponse. With presynaptic input following the postsynaptic spike, the most
likely alternative response is a second output spike. Decreasing the synaptic
connection weight should reduce the possibility of this alternative response.
Because both of these alternatives become less likely as the lag between pre-
and postsynaptic spikes is increased, one would expect that the magnitude
of synaptic plasticity diminishes with the lag, as is observed in the STDP
curve.

Our approach to reducing response variability given a particular input
pattern involves computing the gradient of synaptic weights with respect
to a differentiable model of spiking neuron behavior. We use the spike re-
sponse model (SRM) of Gerstner (2001) with a stochastic threshold, where
the stochastic threshold models fluctuations of the membrane potential or
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the threshold outside experimental control. For the stochastic SRM, the re-
sponse probability is differentiable with respect to the synaptic weights,
allowing us to calculate the gradient that reduces response variability with
respect to the weights. Learning is presumed to take a gradient step to re-
duce the response variability. In modeling neurophysiological experiments,
we demonstrate that this learning rule yields the typical STDP curve. We
can predict the relationship between the exact shape of the STDP curve and
physiologically measurable parameters, and we show that our results are
robust to the choice of the few free parameters of the model.

Many important machine learning algorithms in the literature seek
local optimizers. It is often the case that the initial conditions, which
determine which local optimizer will be found, can be controlled to
avoid unwanted local optimizers. For example, with neural networks,
weights are initialized near the origin; large initial weights would lead
to degenerate solutions. And K-means has many degenerate and sub-
optimal solutions; consequently, careful initialization of cluster centers is
required.

In the case of our model’s learning algorithm, the initial conditions also
avoid the degenerate local optimizer. These initial conditions correspond
to the original weights of the synaptic connections and are constrained
by the specific methodology of the experiments that we model: the sub-
threshold input must have a small but nonzero connection strength, and
the suprathreshold input must have a large connection strength (less than
10%, more than 70% probability of activating the target, respectively). Given
these conditions, the local optimizer that our learning algorithm discovers
is an extremely good fit to the experimental data.

In parallel with our work, two other groups of authors have proposed
explanations of STDP in terms of neurons maximizing an information-
theoretic measure for the spike-response model (Bell & Parra, 2005; Toy-
oizumi et al., 2005). Toyoizumi et al. (2005) maximize the mutual informa-
tion of the input and output between a pool of presynaptic neurons and a
single postsynaptic output neuron, whereas Bell and Parra (2005) maximize
sensitivity between a pool of (possibly correlated) presynaptic neurons and
a pool of postsynaptic neurons. Bell and Parra use a causal SRM model and
do not obtain the LTD component of STDP. As we will show, when the objec-
tive function is minimization of (conditional) response variability, obtaining
LTD critically depends on a stochastic neural response. In the derivation of
Toyoizumi et al. (2005), LTD, which is very weak in magnitude, is attributed
to the refractoriness of the spiking neuron (via the autocorrelation func-
tion), where they use questionably strong and enduring refractoriness. In
our framework, refractoriness suppresses noise in the neuron after spiking,
and we show that in our simulations, strong refraction in fact diminishes
the LTD component of STDP. Furthermore, the mathematical derivation of
Toyoizumi et al. is valid only for an essentially constant membrane poten-
tial with small fluctuations, a condition clearly violated in experimental
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conditions studied by neurophysiologists. It is unclear whether the deriva-
tion would hold under more realistic conditions.

Neither of these approaches thus far succeeds in quantitatively modeling
specific experimental data with neurobiologically realistic timing parame-
ters, and neither explains the relative reduction of STDP as the synaptic
efficacy increases as we do. Nonetheless, these models make an interesting
contrast to ours by suggesting a computational principle of optimization
of information transmission, as contrasted with our principle of neural
response variability reduction. Experimental tests might be devised to dis-
tinguish between these competing theories.

In section 2 we describe the sSRM, and in section 3 we derive the minimal
entropy gradient. In section 4 we describe the STDP experiment, which we
simulate in section 5. We conclude with section 6.

2 The Stochastic Spike Response Model

The spike response model (SRM), defined by Gerstner (2001), is a generic
integrate-and-fire model of a spiking neuron that closely corresponds to
the behavior of a biological spiking neuron and is characterized in terms
of a small set of easily interpretable parameters (Jolivet, Lewis, & Gerstner,
2003; Paninski, Pillow, & Simoncelli, 2005). The standard SRM formulation
describes the temporal evolution of the membrane potential based on past
neuronal events, specifically as a weighted sum of postsynaptic potentials
(PSPs) modulated by reset and threshold effects of previous postsynaptic
spiking events. The general idea is depicted in Figure 2; formally (following
Gerstner, 2001), the membrane potential u;(t) of cell i at time ¢ is defined as

wit)y= Y nlt—fi)+ Y wiy Y €tlfi. G, 1)

fieg! jeni  fieG!

where T is the set of inputs connected to neuron i; G! is the set of times
prior to t that a neuron i has spiked, with firing times f; € G; w;; is the
synaptic weight from neuron j to neuron i; e(t| f;, ) is the PSP in neuron
i due to an input spike from neuron j at time f; given postsynaptic firing
history G!; and n(t — f;) is the refractory response due to the postsynaptic
spike at time f;.

To model the postsynaptic potential ¢ in a leaky-integrate-and-fire neu-
ron, a spike of presynaptic neuron j emitted at time f; generates a post-
synaptic current «(t) for a presynaptic spike arriving at f; for t > f;. In
the absence of postsynaptic firing, this kernel (following Gerstner & Kistler,
2002, eqs 4.62-4.56, pp. 114-115) can be computed as

e(tlf;) = /ft exp(—ﬂ) a(s — f)ds, (2.2)

j Tm
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Figure 2: Membrane potential u(t) of a neuron as a sum of weighted excitatory
PSP kernels due to impinging spikes. Arrival of PSPs marked by arrows. Once
the membrane potential reaches threshold, it is reset, and a reset function 7 is
added to model the recovery effects of the threshold.

where 7, is the decay time of the postsynaptic neuron’s membrane potential.
Consider an exponentially decaying postsynaptic current «(t) of the form

a(t) = rl exp(

S

- i) H(t) 2.3)
T

(see Figure 3A), where 75 is the decay time of the current and H(t) is the
Heaviside function. In the absence of postsynaptic firing, this current con-
tributes a postsynaptic potential of the form

)= 1 [on (-L2) ew (-5L2) | e 5,

(2.4)

with current decay time constant 7; and decay time constant t,,.

When the postsynaptic neuron fires after the presynaptic spike
arrives—at some time f; following presynaptic spike at time f;—the mem-
brane potential is reset, and only the remaining synaptic current «(t') for
t' > f; is integrated in equation 2.2. Following Gerstner, 2001 (section 4.4,
equation 1.66), the PSP that takes such postsynaptic firing into account can
be written as

lf) fi<tr
. . 25
e(tlfs. f) eXP<—(f]rsf)> etlf) fizfi .
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Figure 3: (A) a(t) function. Synaptic input modeled as exponentially decaying
current. (B) Postsynaptic potential due to a synaptic input in the absence of
postsynaptic firing (solid line), and with postsynaptic firing once and twice
(dotted resp. dashed lines; postsynaptic spikes indicated by arrow). (C) Reset
function 7(t). (D) Spike probability p(u) as a function of potential u for different
values of « and 8 parameters.

This function is depicted in Figure 3B, for the cases when a post-
synaptic spike occurs both before and after the presynaptic spike.
In principle, this formulation can be expanded to include the post-
synaptic neuron firing more than once after the onset of the post-
synaptic potential. However, for fast current decay times 7, it is
useful to consider only the residual current input for the first postsy-
naptic spike after onset and assume that any further postsynaptic spik-
ing is modeled by a postsynaptic potential reset to zero from that point
on.

The reset response 7(t) models two phenomena. First, a neuron can be
in a refractory period: it simply cannot spike again for about a millisecond
after a spiking event. Second, after the emission of a spike, the threshold
of the neuron may initially be elevated and then recover to the original
value (Kandel, Schwartz, & Jessell, 2000). The SRM models this behavior as
negative contributions to the membrane potential (see equation 2.1): with
s =t — f; denoting the time since the postsynaptic spike, the refractory
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reset function is defined as (Gerstner, 2001):

Ugps 0<s<é

5) = ) 2.6
n(s) L{absexp<—s+fy>+ureXp(—tS—S)sZST, (2.6)

T r

where a large negative impulse U4, models the absolute refractory period,
with duration §,; the absolute refractory contribution smoothly resets via a
fast-decaying exponential with time constant /. The term U, models the
slow exponential recovery of the elevated threshold with time constant z;.
The function 7 is depicted in Figure 3C.

We made a minor modification to the SRM described in Gerstner (2001)
by relaxing the constraint that 77 = 7,, and also by smoothing the absolute
refractory function (such smoothing is mentioned in Gerstner, but is not

explicitly defined). In all simulations, we use §, =1 ms, 77 =3 ms, and

rrf = 0.25 ms (in line with estimates for biological neurons; Kandel et al.,

2000; the smoothing parameter was chosen to be fast compared to 7).

The SRM we just described is deterministic. Gerstner (2001) introduces
a stochastic variant of the SRM (sSRM) by incorporating the notion of a
stochastic firing threshold: given membrane potential u;(t), the probability
of the neuron firing at time f is specified by p (u,— (t)). Herrmann and Gerstner
(2001) find that for a reasonable escape-rate noise model of the integration
of current in real neurons, the probability of firing is small and constant for
small potentials, but around a threshold ¥, the probability increases linearly
with the potential. In our simulations, we use such a function,

o) = 2 inl1 + exple (9 — )1~ v — ), @7)

where o determines the abruptness of the constant-to-linear transition in
the neighborhood of threshold ¢ and g determines the slope of the linear
increase beyond ¢. This function is depicted in Figure 3D for several values
of o and . We also conducted simulation experiments with sigmoidal and
exponential density functions and found no qualitative difference in the
results.

3 Minimizing Conditional Entropy

We now derive the rule for adjusting the weight from a presynaptic input
neuron j to a postsynaptic neuron i so as to minimize the entropy of i’s
response given a particular spike train from j.

A spike train is described by the set of all times at which a neuron i
emitted spikes within some interval between 0 and T, denoted G!. We
assume the interval is wide enough that the occurrence of spikes outside
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the interval does not influence the state of a neuron within the interval (e.g.,
through threshold reset effects). This assumption allows us to treat intervals
as independent of each other. The set of input spikes received by neuron
i during this interval is denoted F], which is just the union of all output
spike trains of connected presynaptic neurons j: 7! = QT VjeTl;.

Given input spikes F, the stochastic nature of neuron i may lead not
only to the observed response G! but also to a range of other possibilities.
Denote the set of possible responses Q;, where G! € ;. Further, let binary
variable o (t) denote the state of the neuron in the time interval [t, t + At),
where o(t) = 1 means the neuron spikes and o () = 0 means no spike. A
response ¢ € ; is then equivalent to [0(0), o (At), ..., a(T)].

Given a probability density p(£) over all possible responses &, the dif-
ferential entropy of neuron i’s response conditional on input F! is then
defined as

h(Q|FT) /p £)log(p(€)) d& (3.1)

According to our hypothesis, a neuron adjusts its weights so as to min-
imize the conditional response variability. Such an adjustment is obtained
by performing gradient descent on the weighted likelihood of the response,
which corresponds to the conditional entropy, with respect to the weights,

o (1 FT)

3.2
Bwl'j ’ ( )

Awjj = —y

with learning rate y.

In this section, we compute the right-hand side of equation 3.2 for an
sSRM neuron. Substituting the entropy definition of equation 3.1 into equa-
tion 3.2, we obtain:

Q| F
WO _ 0 [ e totpten e
ij Wi j
1
=- / p&) "B ogpie + 1), 63)
i 1]

] log

We closely follow Xie and Seung (2004) to derive ) for a differen-

tiable neuron model firing at times G . First, we factorlze p(&):

T
p&) =[] Ple®lio(t), vt <1). (3.4)
t=0
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The states o (t) are conditionally independent as the probability for a neuron
i to fire during [t, t + At) is determined by the spike probability density of
the membrane potential:

1 with probability p; = pi(t)At,
0 with probability p; =1 — p;(#),

with p;(t) shorthand for the spike probability density of the membrane
potential, ,o(ul (t)) this equation holds for sufficiently small o (t) (see also
Xie & Seung, 2004, for more details).

We note further that

dn(p(€) _ 1 3p()
awij P(S) awz]

and

dpi(t)  0pi(t) du;(t)

= . 3.5
3wl’j ou;(t) 3u)l']‘ (35)

It is straightforward to derive:

dt,

Blog(p(é))_/‘T dpi(t) dui( (ZfefT 8(t— fi) — pi t))
dwj; o t—0 Ou;(t) 8w1] 0i(F)

=—f Pl eIy, fdt+ Y "’( Cfilfi f). (6)
f 2 nlh)

where p}(t) = gﬁ g) and §(f — f;) is the Dirac delta, and we use that in the

sSRM formulation,

ou; (t)
dwi; e(tlf;. fi)-

The term pj(t) in equation 3.6 can be computed for any differentiable
spike probability function. In the case of equation 2.7,

p
1+ exp(a(® — ui(t))

pi(t) =
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Substituting our model for p;(t), p;(t) from equation 2.7 into equation
3.6, we obtain

?log(p(&) _ /T €(tlf;. £
t

Bwi]- 1+ eXP[Ol(l? —u;(t))]
> e(filfi. fi)
e {In(1 4 expla (9 — u;(fi)]) = (9 — w;(fi)}(1 + expla(® — ui(fi))])’

(3.7)

Equation 3.7 can be substituted into equation 3.3, which, when integrated,
provides the gradient-descent weight update that implements conditional
entropy minimization (see equation 3.2).

The hypothesis under exploration is that this gradient-descent weight
update yields STDP. Unfortunately, an analytic solution to equation 3.3
(and hence equation 3.2) is not readily obtained. Nonetheless, numerical
methods can be used to obtain a solution.

We are not suggesting a neuron performs numerical integration of this
sort in real time. It would be preposterous to claim biological realism for
an instantaneous integration over all possible responses & € Q;, as spec-
ified by equation 3.3. Consequently, we have a dilemma: What use is a
computational theory of STDP if the theory demands intensive computa-
tions that could not possibly be performed by a neuron in real time? This
dilemma can be circumvented in two ways. First, the resulting learning
rule might be cached in some form through evolution so that the compu-
tation is not necessary. That is, the solution—the STDP curve itself—may
be built into a neuron. As such, our computational theory provides an
argument for why neurons have evolved to implement the STDP learn-
ing rule. Second, the specific response produced by a neuron on a sin-
gle trial might be considered a sample from the distribution p(£), and
the integration in equation 3.3 can be performed by a sampling pro-
cess over repeated trials; each trial would produce a stochastic gradient
step.

3.1 Numerical Computation. In this section, we describe the proce-
dure for numerically evaluating equation 3.2 via Simpson’s integration
(Hennion, 1962).

This integration is performed over the set of possible responses ;
(see equation 3.3) within the time interval [0...T]. The set ©; can be
divided into disjoint subsets !, which contain exactly n spikes: ; =
U Q'vn.
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Using this breakdown,
oh(SulF]) <g<s>)
== [ s@nogtee) + B,
d og(g(é))

— Z / 9(6)(log(g(©)) + 1) 1°88E) (3.8)

ij

It is illustrative to walk through the alternatives. For n = 0, there is only
one response given the input. Assuming the probability of n = 0 spikes is
po, the n = 0 term of equation 3.8 reads:

ah (| FT o

% = po(log(po) +1) / ol et ;. f)dt. (3.9)
Wi t=0

The probability py is the probability of the neuron not having fired between

t =0and t = T given inputs F/ resulting in membrane potential u;(t) and

hence probability of firing at time f of p(u;(t)),

T
po = SI0, T] = exp (— f . <u,-(t>)dt) , (3.10)

which is equal to the survival function S for a nonhomogeneous Poisson
process with probability density p(u;(t)) for t =[0...T]. (We use the inclu-
sive/exclusive notation for S: 5(0,T) computes the function excluding the
end points; S[0,T] is inclusive.)

For n =1, we must consider all responses containing exactly one output
spike: GI = {f!}, f! € [0, T]. Assuming that neuron i fires only at time f!
with probability p1(f;), the n = 1 term of equation 3.8 reads

|FTY =T !
PO [ () g () +1) [ [ —oietify s

ow;; 1_g

e(f1fi, fil)]dfil- (3.11)

The probability pi(f;!) is computed as

pi(f) = s[o. 1 e (£1) S(FL T (3.12)
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where the membrane potential now incorporates one reset at t = f;:

wi®)=n(t—f)+Y wy Y e(tify, f).

jeri fieF;

For n = 2, we must consider all responses containing exactly two output
spikes: GI' = { £, f?} for f1, f? € [0, T]. Assummg that neuron i fires at f;!
and f? with probability probability po(f!, f?), the n = 2 term of equation
3.8 reads:

T fi=
M) [t Aot ) +

Bw,]

* |:»/t:0_pl Ye(tl f. fi1s fdt

G
pi(f)

e(fi1fj fil f2) +

e(f21f5 fi ﬁz)}dﬁl df2.

(3.13)

i(fiz)

The probability pa(f!!, f?) can again be expressed in terms of the survival
function,

pa(fi', £7) = S[0. f1) i (f7) SLAY f21ei(£7)S(F7, T], (3.14)

with w(t) = n(t = f1)+0(t = f2)+ X, wig X g, €S, f1 f7).

This procedure can be extended for nn > 2 following the pattern above. In
our simulation of the STDP experiments, the probability of obtaining zero,
one, or two spikes already accounted for 99.9% of all possible responses;
adding the responses of three spikes (n = 3) accounted for all possible re-
sponses got this number up to 299.999, which is close to the accuracy of our
numerical computation. In practice, we found that taking into accountn = 3
had no significant contribution to computing Aw, and we did not compute
higher-order terms as the cumulative probability of these responses was
below our numerical precision. For the results we present later, we used
only terms n < 2; we demonstrate that this is sufficient in appendix A.

In this section, we have replaced an integral over possible spike se-
quences ; with an integral over the time of two output spikes, f! and f?,
which we compute numerically.
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Figure 4: Experimental setup of Zhang et al. (1998).

4 Simulation Methodology

We modeled in detail the experiment of Zhang et al. (1998) involving asyn-
chronous costimulation of convergent inputs. In this experiment, depicted
in Figure 4, a postsynaptic neuron is identified that has two neurons pro-
jecting to it: one weak (subthreshold) and one strong (suprathreshold). The
subthreshold input results in depolarization of the postsynaptic neuron, but
the depolarization is not strong enough to cause the postsynaptic neuron to
spike. The suprathreshold input is strong enough to induce a spike in the
postsynaptic neuron. Plasticity of the synapse between the subthreshold
input and the postsynaptic neuron is measured as a function of the tim-
ing between subthreshold and postsynaptic neurons’ spikes (Aty post) by
varying the intervals between induced spikes in the subthreshold and the
suprathreshold inputs (Atyre-pre)- This measurement yields the well-known
STDP curve (see Figure 1b).

In most experimental studies of STDP, the postsynaptic neuron is in-
duced to spike not via a suprathreshold neuron, but rather by depolarizing
current injection directly into the postsynaptic neuron. To model exper-
iments that induce spiking via current injection, additional assumptions
must be made in the spike response model framework. Because these as-
sumptions are not well established in the literature, we have focused on the
synaptic input technique of Zhang et al. (1998). In section 5.1, we propose a
method for modeling a depolarizing current injection in the spike-response
model.

The Zhang et al. (1998) experiment imposes four constraints on a sim-
ulation: (1) the suprathreshold input alone causes spiking more than 70%
of the time; (2) the subthreshold input alone causes spiking less than 10%
of the time; (3) synchronous firing of suprathreshold or subthreshold in-
puts causes LTP if and only if the postsynaptic neuron fires; and (4) the
time constants of the excitatory PSPs (EPSPs)—1; and t,, in the sSRM—are
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in the range of 1 to 5 ms and 7 to 15 ms, respectively. These constraints
remove many free parameters from our simulation. We do not explicitly
model the two input cells; instead, we model the EPSPs they produce. The
magnitude of these EPSPs is picked to satisfy the experimental constraints:
in most simulations, unless reported otherwise, the suprathreshold EPSP
(Wsupra) alone causes a spike in the post on 85% of trials, and the subthresh-
old EPSP (ws,p) alone causes a spike on fewer than 0.1% of trials. In our
principal re-creation of the experiment (see Figure 5), we added normally
distributed variation to wsp, and wg, to simulate the experimental selec-
tion process of finding suitable supra-subthreshold input pairs according
to: w;upm = Wsupra + N(0, Osypra) and w, , = weyy + N(O, 05,p) (We controlled
the random variation for conditions outside the specified firing probability
ranges). Free parameters of the simulation are ¢ and 8 in the spike proba-
bility function (« can be folded into ©) and the magnitude (1}, u4s) and time
constants (7, r,f , Agps) of the reset. We can further investigate how the re-
sults depend on the exact strengths of the subthreshold and suprathreshold
EPSPs.

The dependent variable of the simulation is Atyre.pre, and we measure the
time of the post spike to determine At post. In the experimental protocol,
a pair of inputs is repeatedly stimulated at a specific interval Aty at a
low frequency of 0.1 Hz. The weight update for a given Atprepre is Mea-
sured by comparing the size of the EPSC before stimulation and (about)
half an hour after stimulation. In terms of our model, this repeated stim-
ulation can be considered as drawing a response £ from the stochastic
conditional response density p(&). We estimate the expected weight update
for this density p(£) for a given Aty using equation 3.2 by approximat-
ing the integral by a summation over all time-discretized output responses
consisting of 0, 1, or 2 spikes. Note that performing the weight update
computation like this implicitly assumes that the synaptic efficacies in the
experiment do not change much during repeated stimulation; since long-
term synaptic changes require the synthesis of for example, proteins this
seems a reasonable assumption, also reflected in the half-hour or so that the
experimentalists wait after stimulation before measuring the new synaptic
efficacy.

5 Results

Figure 5A shows an STDP curve produced by the model, obtained by plot-
ting the estimated weight update of equation 3.2 against At,,pos: for fixed
supra and subthreshold inputs. Specifically, we vary the difference in time
between subthreshold and suprathreshold inputs (a pre-pre pair), and we
compute the expected gradient for the subthreshold input w,; over all re-
sponses of the postsynaptic neuron via equation 3.2. We thus obtain a value
for Aw for each Aty data point; we then compute Awg,;(%) as the
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Figure 5: (A) STDP: experimental data (triangles) and model fit (solid line).
(B) Added simulation data points with perturbed weights wg,,,, and w{ ,
(crosses). STDP data redrawn from Zhang et al. (1998). Model parameters:
7, = 2.5 ms, 7, = 10 ms, sub- and suprathreshold weight perturbation in B:
Osupra = 0.33 Wsypra, Tsup = 0.1 wgyp. (C) Model fit compared to previous gener-
ative models (Chechik, 2003, short dashed line; Toyoizumi et al., 2005, long
dashed line; data points and curves were obtained by digitizing figures in origi-
nal papers). Free parameters of Chechik (2003) and Toyoizumi et al. (2005) were
fit to the experimental data as described in appendix B.

relative percentage change of synaptic efficacy: Awg,,(%) = Aw/wgyp x
100%.! For each Atyrepre, the corresponding value Aty st is determined
by calculating for each input pair the average time at which the postsynap-
tic neuron fires relative to the subthreshold input. Together, this results in a
set of (Atpre— post, Awgyp(%)) data points. The continuous graph in Figure 5A

1 We set the global learning rate y in equation 3.2 such that the simulation curve is
scaled to match the neurophysiological results. In all other experiments where we use
relative percentage change Awg,,(%), the same value for y is used.
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is obtained by repeating this procedure for fixed supra- and subthreshold
weights and connecting the resultant points.

In Figure 5B, the supra- and subthreshold weights in the simulation are
randomly perturbed for each pre-pre pair, to simulate the fact that in the
experiment, different pairs of neurons are selected for each pre-pre pair,
leading inevitably to variation in the synaptic strengths. Mild variation of
the input weights yields the “scattering” data points of the relative weight
changes similar to the experimentally observed data.

Clearly, the mild variation we apply is small only relative to the observed
in vivo distributions of synaptic weights in the brain (e.g., Song, Sjostrom,
Reigl, Nelson, & Chklovskii, 2005). However, Zhang et al. (1998) did not
sample randomly from synapses in the brain but rather selected synapses
that had a particularly narrow range of initial EPSPs to satisfy the criteria
for “supra-" and “subthreshold” synapses (see also section 4). Hence, the
experimental variance was particularly small (see Figure 1le of Zhang et al.,
1998), and our variation of the size of the EPSP is in line with the observed
variations in the experimental results of Zhang et al. (1998).

The model produces a good quantitative fit to the experimental data
points (triangles), especially compared to other related work as discussed
in section 1 and robustly obtains the typical LTP and LTD time windows
associated with STDP.

In Figure 5C, we show our model fit compared to the models of Toy-
oizumi et al. (2005) and Chechik (2003). Our model obtained the lowest sum
squared error (1.25 versus 1.63 and 3.27,% respectively; see appendix B for
methods)—this despite the lack of data in the region Atprepost = 0, ..., 10ms
in the Zhang et al. (1998) experiment, where difference in LTD behavior is
most pronounced.

The qualitative shape of the STDP curve is robust to settings of the
spiking neuron model’s parameters, as we will illustrate shortly. Addition-
ally, we found that the type of spike probability function p (exponential,
sigmoidal, or linear) is not critical.

Our model accounts for an additional finding that has not been explained
by alternative theories: the relative magnitude of LTP decreases as the effi-
cacy of the synapse between the subthreshold input and the postsynaptic
target neuron increases; in contrast, LTD remains roughly constant (Bi &
Poo, 1998). Figure 6A shows this effect in the experiment of Bi and Poo
(1998), and Figure 6B shows the corresponding result from our model. We
compute the magnitude of LTP and LTD for the peak modulation (i.e.,
Atpre—post = =5 for LTP and Aty post = +5 for LTD) as the amplitude of

2 Of note for this comparison is that our spiking neuron model uses a more sophis-
ticated difference of exponentials (see equation 2.4) to describe the EPSP, whereas the
spiking neuron models in Toyoizumi et al. (2005) and Chechik (2003) use a single ex-
ponential. These other models might be improved using the more sophisticated EPSP
function.
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Figure 6: Dependence of LTP and LTD magnitude on efficacy of the subthresh-
old input. (A) Experimental data redrawn from Bi and Poo (1998). (B) Simulation
result.

the subthreshold EPSP is increased. The model’s explanation for this phe-
nomenon is simple: as the synaptic weight increases, its effect saturates, and
a small change to the weight does little to alter its influence. Consequently,
the gradient of the entropy with respect to the weight goes toward zero.
Similar saturation effects are observed in gradient-based learning methods
with nonlinear response functions such as backpropagation.

As we mentioned earlier, other theories have had difficulty reproduc-
ing the typical shape of the LTD component of STDP. In Chechik (2003),
the shape is predicted to be near uniform, and in Toyoizumi et al. (2005),
the shape depends on the autocorrelation. In our stochastic spike response
model, this component arises due to the stochastic variation in the neu-
ral response: in the specific STDP experiment, reduction of variability is
achieved by reducing the probability of multiple output spikes. To argue
for this conclusion, we performed simulations that make our neuron model
less variable in various ways, and each of these manipulations results in a
reduction in the LTD component of STDP. In Figures 7A and 7B, we make
the threshold more deterministic by increasing the values of « and g in the
spike probability density function. In Figure 7C, we increase the magnitude
of the refractory response 7, which will prevent spikes following the initial
postsynaptic response. And finally, in Figure 7D, we increase the efficacy
of the suprathreshold input, which prevents the postsynaptic neuron’s po-
tential from hovering in the region where the stochasticity of the threshold
can induce a spike. Modulation of all of these variables makes the threshold
more deterministic and decreases LTD relative to LTP.

Our simulation results are robust to biologically realizable variation
in the parameters of the sSRM model. For example, time constants of
the EPSPs can be varied with no qualitative effect on the STDP curves.
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Figure 7: Dependence of relative LTP and LTD on (A) the parameter « of the
stochastic threshold function, (B) the parameter 8 of the stochastic threshold
function, (C) the magnitude of refraction, 5, and (D) efficacy of the suprathresh-
old synapse, expressed as p(fire|supra), the probability that the postsynaptic
neuron will fire when receiving only the suprathreshold input. Larger values of
p(fire|supra) correspond to a weaker suprathreshold synapse. In all graphs, the
weight gradient for individual curves is normalized to peak LTP for comparison
purposes.

Figures 8A and 8B show the effect of manipulating the membrane potential
decay time 7,, and the EPSP rise time t;, respectively. Note that manip-
ulation of these time constants does predict a systematic effect on STDP
curves. Increasing t,, increases the duration of both the LTP and LTD win-
dows, whereas decreasing t; leads to a faster transition from LTP to LTD.
Both predictions could be tested experimentally by correlating time con-
stants of individual neurons studied with the time course of their STDP
curves.

5.1 Current Injection. We mentioned earlier that in many STDP ex-
periments, an action potential is induced in the postsynaptic neuron not
via a suprathreshold presynaptic input, but via a depolarizing current in-
jection. In order to model experiments using current injection, we must
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Figure 8: Influence of time constants of the sSSRM model on the shape of the
STDP curve: (A) varying the membrane potential time-constant 7, and (B)
varying the EPSP rise time constant z,. In both figures, the magnitude of LTP
and LTD has been normalized to 1 for each curve to allow for easy examination
of the effect of the manipulation on temporal characteristics of the STDP curves.

characterize the current function and its effect on the postsynaptic neu-
ron. In this section, we make such a proposal framed in terms of the spike
response model and report simulation results using current injection.

We model the injected current Z(t) as a rectangular step function,

I(t) = H(t — fi) Zc H(t — [A1 — f1]), (6.1)

where the current of magnitude Z. is switched on at t = f; and off at
t = fr + Ar. In the Zhang et al. (1998) experiment, A; is 2 ms, a value we
adopted for our simulations as well.

The resulting postsynaptic potential, €. is

e(t) = /0 texp <—i> I(s) ds. (5.2)

Tm

In the absence of postsynaptic firing, the membrane potential of an
integrate-and-fire neuron in response to a step current is (Gerstner, 2001):

é(tl f1) = Zc(1 — exp[—(t = f1)/Tu])- (5.3)

In the presence of postsynaptic firing at time f;, we assume—as we did pre-
viously in equation 2.5—a reset and subsequent integration of the residual
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Figure9: Voltage response of a spiking neuron for a 2 ms current injection in the
spike response model. Solid curve: The postsynaptic neuron produces no spike,
and the potential due to the injected current decays with the membrane time
constant t,,. Dotted curve: The postsynaptic neuron spikes while the current is
still being applied. Dashed curve: The postsynaptic neuron spikes after appli-
cation of the current has terminated (moment of postsynaptic spiking indicated
by arrows).

current:

et f)=H(fi — t)/otexp(_5> I(s)ds

Tm

FH(E— f’i)/; exp(—:—m) I(s) ds. (5.4)

These €. kernels are depicted in Figure 9 for a postsynaptic spike occurring
at various times f i. In our simulations, we chose the current magnitude Z,
to be large enough to elicit spiking of the target neuron with probability
greater than 0.7.

Figure 10a shows the STDP curve obtained using the current injection
model for the exact same model parameter settings used to produce the
result based on a suprathreshold synaptic input (depicted in Figure 5A)
superimposed on the experimental data STDP obtained by depolarizing
current injection from Zhang et al. (1998). Figure 10b additionally superim-
poses the earlier result on the current injection result, and the two curves are
difficult to distinguish. As in the earlier result, variation of model parame-
ters has little appreciable effect on the model’s behavior using the current
injection paradigm, suggesting that current injection versus synaptic input
makes little difference on the nature of STDP.
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Figure 10: (A)STDP curve obtained for SRM with current injection (solid curve)
compared with experimental data for depolarizing current injection (circles;
redrawn from Zhang et al., 1998). (B) Comparing STDP curves for both current
injection (solid curve) and suprathreshold input (dashed curve) models. The
same model parameters are used for both curves. Experimental data redrawn
from Zhang et al. (1998) for current injection (circles) and suprathreshold input
(triangles) paradigms are superimposed.

6 Discussion

In this letter, we explored a fundamental computational principle: that
synapses adapt so as to minimize the variability of a neuron’s response in
the face of noisy inputs, yielding more reliable neural representations. From
this principle, instantiated as entropy minimization, we derived the STDP
learning curve. Importantly, the simulation methodology we used to derive
the curve closely follows the procedure used in neurophysiological experi-
ments (Zhang et al., 1998): assuming variation in sub- and suprathreshold
synaptic efficacies from experimental pair-to-pair even recovers the noisy
scattering of efficacy changes. Our simulations furthermore obtain an STDP
curve that is robust to model parameters and details of the noise distribu-
tion.

Our results are critically dependent on the use of Gerstner’s stochas-
tic spike response model, whose dynamics are a good approximation to
those of a biological spiking neuron. The sSRM has the virtue of being char-
acterized by parameters that are readily related to neural dynamics, and
its dynamics are differentiable such that we can derive a gradient-descent
learning rule that minimizes the response variability of a postsynaptic neu-
ron given a particular set of input spikes.

Our model predicts the shape of the STDP curve and how it relates
to properties of a neuron’s response function. These predictions may be
empirically testable if a diverse population of cells can be studied. The
predictions include the following. First, the width of the LTD and LTP
windows depends on the (excitatory) PSP time constants (see Figures 7A



Reducing the Variability of Neural Responses 395

and 7B). Second, the strength of LTD relative to LTP depends on the degree
of noise in the neuron’s response; the LTD strength is related to the noise
level.

Our model also can characterize the nature of the learning curve for ex-
perimental situations that deviate from the boundary conditions of Zhang
et al. (1998). In Zhang et al., the subthreshold and suprathreshold inputs
produced postsynaptic firing with probability less than .10 and greater than
.70, respectively. Our model can predict the consequences of violating these
conditions. For example, when the subthreshold input is very strong or
the suprathreshold input is very weak, our model produces strictly LTD,
that is, anti-Hebbian learning. The consequence of a strong subthreshold
input is shown in Figure 6B, and the consequence of a weak suprathresh-
old input is shown in Figure 7D. Intuitively, this simulation result makes
sense because—in the first case—the most likely alternative response of the
postsynaptic neuron is to produce more than one spike, and—in the second
case—the most likely alternative response is no postsynaptic spike at all. In
both cases, synaptic depression reduces the probability of the alternative re-
sponse. We note that such strictly anti-Hebbian learning has been reported
in relation to STDP-type experiments (Roberts & Bell, 2002).

For very noisy thresholds and for weak suprathreshold inputs, our model
produces an LTD dip before LTP (see Figure 7D). This dip is in fact also
present in the work of Chechik (2003). We find it intriguing that this dip
is also observed in the experimental results of Nishiyama et al. (2000). The
explanation for this dip may be along the same lines as the explanation for
the LTD window: given the very noisy threshold, the subthreshold input
may occasionally cause spiking, and decreasing its weight would decrease
response variability. This may not be offset by the increase due to its con-
tribution to the spike caused by the suprathreshold input, as it is too early
to have much influence. With careful consideration of experimental condi-
tions and neuron parameters, it may be possible to reconcile the somewhat
discrepant STDP curves obtained in the literature using our model.

In our model, the transition from LTP to LTD occurs at a slight offset
from Aty._post = 0: if the subthreshold input fires 1 to 2 ms before the
postsynaptic neuron fires (on average), then neither potentiation nor de-
pression occurs. This offset of 1 to 2 ms is attributable to the current decay
time constant, t;. The neurophysiological data are not sufficiently precise
to determine the exact offset of the LTP-LTD transition in real neurons. Un-
fortunately, few experimental data points are recorded near Aty post = 0.
However, the STDP curve of our model does pass through the one data point
in that region (see Figure 5A), so the offset may be a real phenomenon.

The main focus of the simulations in this letter was to replicate the
experimental paradigm of Zhang et al. (1998), in which a suprathresh-
old presynaptic neuron is used to induce the postsynaptic neuron to fire.
The Zhang et al. (1998) study is exceptional in that most other experi-
mental studies of STDP use a depolarizing current injection to induce the
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postsynaptic neuron to fire. We are not aware of any established model
for current injection within the SRM framework. We therefore proposed a
model of current injection within the SRM framework in section 5.1. The
proposed model is an ideal abstraction of current injection that does not
take into account effects like current onset and offset fluctuations inherent
in such experimental methods. Even with these limitations in mind, the
current injection model produced STDP curves very similar to the ones ob-
tained by the simulation of the suprathreshold input-induced postsynaptic
firing.

The simulations reported in this letter account for classical STDP exper-
iments in which a single presynaptic spike is paired with a single postsy-
naptic spike. The same methodology can be applied to model experimental
paradigms involving multiple presynaptic or postsynaptic spikes, or both.
However, the computation involved becomes nontrivial. We are currently
engaged in modeling data from the multispike experiments of Froemke and
Dan (2002).

We note that one set of simulation results we reported is particularly
pertinent for comparing and contrasting our model to the related model
of Toyoizumi et al. (2005). The simulations reported in Figure 7 suggest
that noise in our model is critical for obtaining the LTD component of
STDP and that parameters that reduce noise in the neural response also
reduce LTD. We found that increasing the strength of neuronal refraction
reduces response variability and therefore diminishes the LTD component
of STDP. This notion is also put forward in very recent work by Pfister,
Toyoizumi, Barber, and Gerstner (2006), where an STDP-like rule arises
from from a supervised learning procedure that aims to obtain spikes at
times specified by a teacher. The LTD component in this work also depends
on the probability of stochastic activity.

In sharp contrast, Toyoizumi et al. (2005) suggest that neuronal refraction
is responsible for LTD. Because the two models are quite similar, it seems
unlikely that the models make opposite predictions and the discrepancy
may be due to Toyoizumi et al.’s focus on analytical approximations to solve
the mathematical problem at hand, limiting the validity of comparisons
between that model and biological experiments in the process.

It is useful to reflect on the philosphy of choosing reduction of spike train
variability as a target function, as it so obviously has the degenerate but
energy-efficient solution of emitting no spikes at all. The usefulness of our
approach clearly relies on the stochastic gradient reaching a local optimum
in the likelihood space that does not always correspond to the degenerate
solution. We compute the gradient of the input weights with respect to the
conditionally independent sequence of response intervals [t,t + A]. The
gradient approach tries to push the probability of the responses in these
intervals to either 0 or 1, irrespective of what the response is (not firing or
firing). We find that in the sSRM spiking neuron model, this gradient can
be toward either state of each response interval, which can be attributed
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to the monotonically increasing spike probability density as a function of
the membrane potential. This spike probability density allows neurons to
become very reliable by firing spikes only at specific times, at least when
starting from a set of input weights that, given the input pattern, is likely
to induce a spike in the postsynaptic neuron.

The fact that the target function is the reduction of postsynaptic spike
train variability does predict that in the case of small inputs impinging on
a postsynaptic target causing only occasional firing, the prediction would
be that the average weight update due to this target function would reduce
these inputs to zero.

We have modeled the experimental studies in some detail, beyond the
level of detail achieved by other researchers investigating STDP. Even a
model with an entirely heuristic learning rule has value if it obtains a better
fit to the data than other models of similar complexity. Our model has a
learning rule that goes beyond heuristic: the learning rule is derived from
a computational objective. To some, this objective may not be as exciting
as more elaborative objectives like information maximization. As it is, our
model stands alone from the contenders in providing a first-principle ac-
count of STDP that fits experimental data extremely well. Might there be a
mathematically sexier model? We certainly hope so, but it has not yet been
discovered.

We reiterate the point that our learning objective is viewed as but one
of many objectives operating in parallel. The question remains as to why
neurons would respond in such a highly variable way to fixed input spike
trains: a more deterministic threshold would eliminate the need for any min-
imization of response variability. We can only speculate that the variability
in neuronal responses may also well serve these other objectives, such as
exploitation or exploration in reinforcement learning or the exploitation of
stochastic resonance phenomena (e.g., Hahnloser, Sarpeshkar, Mahowald,
Douglas, & Seung, 2000).

It is interesting to note that minimization of conditional response vari-
ability corresponds to one part of the equation that maximizes mutual
information. The mutual information Z between input X and outputs Y is
defined as

(X, Y) = H(Y) — H(Y|X).

Hence, minimization of the conditional entropy H(Y|X)—our
objective—along with the secondary unsupervised objective of maxi-
mizing the marginal entropy H(Y) maximize mutual information. The first
unsupervised objective is notoriously hard to compute (e.g., see Bell &
Parra, 2005, for an extensive discussion) whereas, as we have shown, the
second objective—conditional entropy minimization—can be computed
relatively easily via stochastic gradient descent. Indeed, in this light, it
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Figure 11: STDP graphs for Aw computed using the terms n < 2 (solid line)
and n < 3 (crossed solid line).

is a virtue of our model that we account for the experimental data with
only one component of the mutual information objective (taking the
responses in the experimental conditions as the set of responses Y). The
relatively simple nature of the experiments that uncovered STDP lacks
any interaction with other (output) neurons, and we may speculate that
STDP may be the degenerate reflection of information maximization in the
absence of such interactions. If subsequent work shows that STDP can be
explained by mutual information maximization (without the drawbacks
of existing work, such as the rate-based treatment of Chechik, 2003, or the
unrealistic autocorrelation function and difficulty of relating to biological
parameters of Toyoizumi et al., 2005), this work contributes in helping to
tease apart the components of the objective that are necessary and sufficient
for explaining the data.

Appendix A: Higher-Order Spike Probabilities

To compute Aw, we stop atn = 2, as in the experimental conditions that we
model, the contribution of n > 2 spikes is vanishingly small. We find that
the probability of three spikes occurring is typically < 1le — 5, and then =3
term did not contribute significantly, as shown, for example, in Figure 11.
Intuitively it seems very unlikely that the gradient of the conditional
response entropy is dominated by terms that are highly unlikely. This could
be the case only if the gradient on the probability of getting three or more
spikes would be much larger than the gradient on getting, say, two spikes.
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Given the setup of the model with an increasing probability of firing a spike
as a function of the membrane potential, it is easy to see that changing a
weight will change the probability of obtaining two spikes much more
than the probability of obtaining three spikes. Hence, the entropy gradient
from components n < 2 will be (in practice, much) larger than the gradient
for terms n =3,n =4, .... As we remarked before, in our simulation of
the experimental setup, the probability of obtaining three spikes given the
input was computed to be < le — 5; the overall probability was computed
at up to le — 6. The probability of n = 4 was below the precision of our
simulation.

Appendix B: Sum-Squared-Error Parameter Fitting

To compute the sum squared error when comparing the different STDP
models in section 5, we use linear regression in the free parameters to mini-
mize the sum-squared error between the model curves and the experimental
data.

For m experimental data points {(At;, Aw), ... (Aty, Aw,)} and model
curve Aw = f(At), we report for each model curve the sum-squared error
for those values of the free parameters that minimize the sum-squared error
E%:

m

E2= min Z(Awi - f(Afi))2~

free parameters < 1
1=

For our model, linear regression is performed in the scaling parameter y
in equation 3.2 that relates the gradient obtained with the model parameters
mentioned to the weight change.

Where possible for the other models, we set model parameters to corre-
spond to the values observed in the experimental conditions described in
section 4.

For the model by Chechik (2003), the weight update is computed as the
sum of a positive exponent and a negative damping contribution,

Aw =y ('H(—At) exp(At/t) — H{t + AYH(—A — t)K) ,

where At is computed as ¢y, — tpost, K denotes the negative damping con-
tribution that is applied over a time window A before and after the post-
synaptic spike, and H() denotes the Heaviside function. The time constant
7 is related to the decay of the EPSP, and we set this value to the same
value we use for our model: 10 ms. Linear regression to find the minimal
sum-squared error is performed on the free parameters y, K, A.
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In Toyoizumi et al. (2005), the learning rule is the sum of two terms

Aw =y (2(At) — po(¢ * €7)(AL))

where €(t) is the EPSP, modeled as ©(t) exp(—t/t), and jo(¢ * €2)(At) is a
function of the autocorrelation function of a neuron (¢ * €2)(At), times the
spontaneous neural activity in the absence of input, po. The EPSP decay
time constant used in Toyoizumi et al. was already set to = 10 ms, and for
the two terms in the sum we used the functions described by Figures 2A
and 2B in Toyoizumi et al. We performed linear regression to the one free
parameter, y.

Note that for this model, we obtain better LTD, and hence E2, for larger
values of u as those used in Toyoizumi et al. (2005). However, then E? still
remains worse than for the other two models, and the spontaneous neural
activity becomes unrealistically large.
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